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Abstract

This chapter covers recent developments in observational and theoretical

studies on scattering and attenuation of high-frequency seismic waves in the

earth's lithosphere. There are two distinct physical mechanisms for attenuation,

intrinsic absorption and scattering loss due to distributed heterogeneities. The

most prominent evidence for the existence of small-scale random heterogeneities

is the existence of "coda" which is the tail portion of the seismograms of local

earthquakes. The radiative transfer theory is introduced to account for the effects

of multiple scattering and provides an efficient way to model observed coda

characteristics of local earthquakes. The coda normalization method is widely

used for the estimation of site amplification factors, source spectra, and

attenuation per travel distance. There is also a stochastic method to invert for the

spectral structure of the random heterogeneity from the coherence analysis of

seismic array data. This method focuses on forward scattering characteristics. For

forward modeling, there are various approaches for numerically calculating wave

propagation in heterogeneous media.

Glossaries: Born approximation, coda waves, coda attenuation, coda

normalization method, coherence, duration magnitude, ensemble of random
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media, envelope broadening, lapse time, parabolic approximation, Q value,

radiative transfer theory, random media, Rytov method, scattering, scattering

coefficient, seismic albedo, seismic array.

I. Attenuation of seismic waves

Scattering and attenuation of high-frequency seismic waves are important

parameters to quantify and to physically characterize the earth medium. We first

compile measurements of attenuation of seismic waves, and discuss physical

mechanisms of attenuation in the lithosphere: intrinsic absorption and scattering

loss due to distributed heterogeneities. As a model of attenuation, we introduce an

approach for calculating the amount of scattering loss in a manner consistent with

conventional seismological attenuation measurements.

A. Attenuation of P- and S-waves observed

The observed seismic-wave amplitudes usually decay exponentially with

increasing travel distance after the correction for geometrical spreading, and
decay rates are proportional to Q−1

 which characterizes the attenuation. For

spherically outgoing S-waves of frequency f  in a uniform velocity structure, the

spectral amplitude at a travel distance r  goes roughly as

uS Direct r; f( )∝ e− πr fQS
−1 β0 r , where β0  is the S-wave velocity. We first compile

reported values of QS
−1  and QP

−1  for the lithosphere in Figs. 1a and b, respectively.

Anderson and Hart (1978) proposed QS
−1
�0.002, QP

−1 ≈0.0009, and ratio

QP
−1 QS

−1
�0.5 for frequencies < 0.05 Hz for depths < 45 km. Analyzing

teleseismic P- and S-waves, Taylor et al. (1986) found that QS
−1

 was larger in the

Basin and Range Province than in the Shield. Analyzing records of

microearthquakes in Kanto, Japan using the coda normalization method (see II

D), Aki (1980) found that QS
−1  decreases with increasing frequency as a power

law QS
−1 µ f - 0.6– 0.8( )  for 1–25 Hz. Kinoshita (1994) reported a decrease in QS

−1
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with decreasing frequency for frequencies less than about 0.8 Hz (curve 16 in Fig.

1a) in southern Kanto, Japan. Yoshimoto et al. (1993) estimated

QS
−1 ≈ 0.012 f −0.73  and QP

−1 ≈ 0.031 f −0 .5  for 1–32 Hz in Kanto, Japan for depth <

100 km and the resultant ratio QP
−1 QS

−1  is larger than 1. Yoshimoto et al. (1998)

found rather strong attenuation in the shallow crust, QS
−1 ≈ 0.0034 f −0.12  and

QP
−1 ≈ 0.052 f −0.66

 for 25–102 Hz. Carpenter and Sanford (1985) reported

QP
−1 QS

−1 ≈1.5  for 3–30 Hz in the upper crust of the central Rio Grande Rift.

We may summarize the observed characteristics as follows: QS
−1

 is of the

order of 10−2  at 1 Hz and decreases to the order of 10−3
 at 20 Hz. It seems

reasonable to write the frequency dependence of attenuation in the form of a

power law as QS
−1 ∝ f −n  for frequencies higher than 1 Hz, where the power n

ranges from 0.5 to 1. The frequency dependence at 0.1~1 Hz remains poorly

understood because seismic measurements in this band are difficult to make.

Results in Fig. 1b show that QP
−1

 also decreases with increasing frequency for

frequencies higher than 1 Hz. For frequencies lower than 0.05 Hz, the ratio

QP
−1 QS

−1  has been taken to be a constant less than 1. Many have assumed that the

ratio for higher frequencies is the same as for low frequencies. However, recent

observations have clearly shown that the ratio QP
−1 QS

−1
 ranges between 1 and 2

for frequencies higher than 1 Hz. (Yoshimoto et al., 1993).

There have been many attempts to derive attenuation tomogram images

from the spectral decay analysis of recorded body waves (Clawson et al., 1989;

Scherbaum and Wyss, 1990; Al-Shukri and Mitchell, 1990; Ponko and Sanders,

1994). It is important to overcome the trade-off between the frequency

dependencies of source spectra and Q−1  and remove site amplification factors

near the recording station for imaging the attenuation tomogram: some supposed

the ω2  model for source spectra and frequency independent Q−1  in the analyses.

Seismic attenuation is usually considered to be a combination of two

mechanisms, scattering loss and intrinsic absorption. Measurements of attenuation
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of direct seismic waves give values for total attenuation. Scattering redistributes

wave energy within the medium. Conversely, intrinsic absorption refers to the

conversion of vibration energy into heat. Wu (1985) introduced the concept of

seismic albedo B0  as the ratio of scattering loss to total attenuation.

B. Intrinsic absorption

There are several review papers that discuss proposed mechanisms for

intrinsic absorption that lead to frequency-independent QP
−1  and QS

−1  (Knopoff,

1964; Jackson and Anderson, 1970; Mavko et al., 1979; Dziewonski, 1979). For

seismic waves to remain causal in the presence of attenuation, the relationship

between frequency-dependent Q
−1

 and velocity dispersion was discussed by Liu

et al. (1976).

Many proposed mechanisms are based on the observation that crustal

rocks have microscopic cracks and pores which may contain fluids. These

features have dimensions much smaller than the wavelengths of regional seismic

phases. Walsh (1966) proposed frictional sliding on dry surfaces of thin cracks as

an attenuation mechanism. Nur (1971) proposed viscous dissipation in a zone of

partially molten rock to explain the low velocity/high attenuation zone beneath

the lithosphere. Even though the addition of water reduces the melting

temperature of rocks, it is unlikely that melted rock exists in most regions of the

lithosphere. Mavko and Nur (1979) examined the effect of partial saturation of

cracks on absorption: fluid movement within cracks is enhanced by the presence

of gas bubbles. O’Connell and Budiansky (1977) proposed a model in which fluid

moves between closely spaced adjacent cracks. Tittmann et al. (1980) measured

an increase of QS
−1

 with increasing content of volatile in dry rocks. They found

that the rapid increase was due to an interaction between adsorbed water film on

the solid surface by thermally activated motions. Thermally activated processes at

grain boundaries have been proposed as an absorption mechanism for the upper
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mantle (Anderson and Hart, 1978; Lundquist and Cormier, 1980). Spatial

temperature differences induced by adiabatic compression during wave

propagation will be reduced by thermal diffusion (Zener, 1948; Savage, 1966a),

which removes vibrational energy from the wave field. Grain-sized

heterogeneities in a rock increase the amount of predicted absorption by this

mechanism, which is called thermoelastic effect. Savage (1966b) invest igated

thermoelasticity caused by stress concentrations induced by the presence of

cracks. Most of the mechanisms discussed above can predict QS
−1  having values in

the range of 10−3 ; however, the importance of various mechanisms varies with

depth, temperature, fracture content, fracture aspect ratios, pressure, and the

presence of fluids. Aki (1980) discussed a relation between physical dimensions

and the observed and partially conjectured frequency-dependence of QS
−1  having a

peak on the order of 0.01 around 0.5 Hz. He preferred thermoelasticity as the

most viable model at lithospheric temperatures since the required scales for rock

grains and cracks along with the amount of attenuation are in closest agreement

with observations.

C. Scattering loss

Scattering due to heterogeneities distributed in the earth also causes a decrease in

amplitude with travel distance (Aki, 1980), where the characteristic frequency is

determined by a characteristic spatial scale, such as the correlation length of

random media or the crack length. We begin to study scattering using the scalar-

wave equation in inhomogeneous media. We suppose the wave velocity is written

as V x( ) = V0 1 + ξ x( )[ ] , where V0  is the background velocity and small fractional

fluctuation ξ x( )  is a homogeneous and isotropic random function of coordinate

x . We imagine an ensemble of random media ξ x( ){ } . First, we define the

autocorrelation function (ACF) R x( ) ≡ ξ y( )ξ y + x( )  as a statistical measure.

The spatial scale and the strength of inhomogeneity are characterized by
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correlation length a  and the mean square fractional fluctuation ε2 , respectively.

We divide the random medium into blocks of a dimension larger than a. We

imagine a scalar plane-wave of angular frequency ω of unit amplitude incident

upon a localized inhomogeneity. We calculate the generation of outgoing

scattered waves using the Born approximation. Taking the ensemble average of

scattering amplitude at scattering angle ψ , we get the differential scattering

coefficient, which is the scattering power per unit volume, at angular frequency

ω as

g ψ;ω( ) =
k 4

π
P 2k sin

ψ
2

 
 
  

 
                                             (1)

where wavenumber k = ω/ V0  and P  is the power spectral density function

(PSDF) of random inhomogeneity. The fractional scattering loss of incident-wave

energy per unit travel distance is the average of g over solid angle, which is total

scattering coefficient g0  (Aki and Richards, 1980). Dividing g0  by k , we get

scattering loss
BSc

Q
−1 ω( )≡

g0

k
=

1

4πk
g ψ;ω( )∫ 2πsin ψdψ =

k3

2π
P 2ksin

ψ
2

 
 
  

 
 

0

π

∫ sin ψdψ    (2)

In the case of exponential ACF R x( ) = ε2 e−r / a
, with PSDF P m( ) =

8πε2a3 1+ a2m2( )2
, the asymptotic behavior is 

BScQ−1 ≈  2 ε2ak for ak >>1. As

plotted by a dotted curve in Fig. 2, Eq. (2) predicts attenuation larger than ε 2  for

large ak  even if ε2  is small. The large scattering loss here predicted for high

frequencies is caused by strong forward scattering in a cone around the forward

direction, ψ <1/ ak . There is a disagreement between 
BScQ−1

 obtained from direct

application of the Born approximation and observed QS
−1

 which decreases with

increasing frequency for high frequencies (see Fig. 1a). Wu (1982) proposed a

method to calculate the scattering loss by specifying a lower bound of scattering

angle ψ C = 90�

 in Eq. (2) by arguing that this accounts only for the back-

scattered energy, which is lost:



Scattering and Attenuation of Seismic Waves in the Lithosphere / 7

ch11Text.doc        12/30/99 6:41 PM

CScQ−1 ω( )=
k3

2π ψC

π

∫ P 2k sin
ψ
2

 
 
  

 
 sin ψdψ (3)

Sato (1982) suggested that the strong increase in attenuation for high frequencies

is due to the travel-time (phase) fluctuation caused by velocity fluctuation. He

proposed a method to calculate the scattering loss after subtracting the travel-time

fluctuation caused by velocity fluctuation of which the wavelengths are larger

than twice the wavelength of incident waves, which corresponds to ψ C ≈ 29�

 in

(3). For an exponential ACF, corrected scattering loss CSc
Q

−1

 has a peak of the

order of ε2  at ak ≈ 1, and becomes CScQ−1 ω( )∝ ε 2 ak
 
for ak >>1. Solid curves

in Fig. 2 show the scattering loss given by (3) against ak . Such a frequency

dependence well explains the observed frequency dependence of attenuation as

shown in Fig. 1. Extending the above idea to elastic vector-waves and fitting the
predicted scattering loss curve to observed QS

−1 , Sato (1984) estimated ε2 =0.01

and a=2 km for the lithosphere. The choice of ψ C  was numerically examined by

several investigators (Frankel and Clayton, 1986; Roth and Korn, 1993; Fang and

Müller, 1996).

There have been many studies of scattering by distributed cracks and

cavities (Varadan et al., 1978; Benites et al., 1992; Benites et al., 1997; Kikuchi,

1981; Matsunami, 1990; Kawahara and Yamashita, 1992). Scattering by cracks
gives a peak in Q

−1
 when the wavelength is of the same order as the dimension of

the crack; however, it is difficult to imagine open cracks having dimensions large

enough to be comparable to regional seismic wavelengths deep in the earth.

II. Seismogram envelopes of local earthquakes

The appearance of coda waves in seismograms is one of the most

prominent observations supporting the existence of small-scale random

heterogeneities in the earth (Aki, 1969). We will now discuss characteristics of

observed coda. Then we will introduce the radiative transfer theory, which can

account for the effects of multiple scattering and model observed coda
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characteristics. We compile measurements of total scattering coefficient and coda

attenuation, which characterize coda excitation and coda amplitude decay,

respectively. We will then discuss the coda normalization method, which is

widely used for the estimation of attenuation per travel distance, site

amplification factors, and source spectra on the basis of the spatially uniform

distribution of coda energy at a long lapse time. Finally, we will present the

multiple lapse time window analysis method that has been developed for the

measurement of scattering loss and intrinsic absorption based on the solution of

the radiative transfer theory.

A. Coda characteristics

We show seismograms of a typical local earthquake in Fig. 3: the direct S-

wave is followed by complex wave trains, which are called “S-coda” or simply

“coda”. Clear S-coda waves have been identified on seismograms recorded at the

bottom of deep boreholes (Sato, 1978; Leary and Abercrombie, 1994). The f-k

analysis of array seismic data shows that S-coda is composed of many wavelets

arriving from various directions. Recorded waveforms show a large variation in

amplitude near the direct S-arrival: however, the variation decreases as lapse time

increases. S-coda waves have a common envelope shape at most stations near the

epicenter after about twice the S-wave travel-time (Rautian and Khalturin, 1978).

The logarithm of the trace duration of a local seismogram is generally

proportional to earthquake magnitude. Trace duration has been used for the quick

determination of earthquake magnitudes in many regions of the world (Tsumura,

1967).

B. Radiative Transfer Theory

Wu (1985) and Shang and Gao (1988) first introduced the radiative

transfer theory into seismology, then Zeng et al. (1991) formulated the time-
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dependent multiple scattering process in 3D. Here, we introduce a theory for

multiple isotropic scattering process for a point shear-dislocation source (Sato et

al., 1997). We imagine a nonabsorbing 3D scattering medium with the

background propagation velocity V0 , in which point-like isotropic scatterers of

cross-section σ0   are randomly and homogeneously distributed with density n ,

where g0 ≡ nσ0 . We assume an impulsive source located at the origin of energy

W  with radiation pattern Ξ θ,φ( ) (see Fig. 4a) at time zero. The scattering process

is written by

E x, t( )= W Ξ θ,φ( )GE x, t( ) + g0V0 GE x − x' ,t − t'( )E x' , t'( )d
−∞

∞

∫ x' dt'
−∞

∞

∫
−∞

∞

∫
−∞

∞

∫ (4)

where the convolution integral means the propagation of energy from the last

scattering point to the receiver. The first term is for the direct propagation, where

GE x, t( )=
1

4πV0 r2 H t( )δ t −
r

V0

  

 
 

  

 
 e− g0V0 t  (5)

We can analytically solve Eqs. (4)~(5) by using the Fourier-Laplace

transform in space-time, and a spherical harmonics expansion in angle. For the

case of spherical source radiation Ξ =1, Zeng et al. (1991) got

E x,t( )= W

4πV0 r 2
δ t − r

V0

  

 
 

  

 
 e−g0V0tH t( )+ Wg0e

−g0V0 t

4πr2

r

V0t
ln

r + V0t

r − V0t

  

 
 

  

 
 H t − r

V0

  

 
 

  

  
 

+Wg0
2V0

2 1

2π( )2 dωdk e−iωt − ikr ik

2πr

G E0 −k,−iω( )3

1 − g0V0G E0 −k, −iω( )−∞

∞

∫
−∞

∞

∫
    (6)

where G E0
k, s( ) = 1 kV

0( )tan−1 kV
0

s + g
0
V

0( ). The second term shows the single

scattering term (Sato, 1977; Kopnichev, 1975), which decreases according to the

inverse square of lapse time at large lapse time as Wg0 / 2πV0
2t 2

 (Aki and

Chouet, 1975).

We show temporal variations of normalized energy density ( E = E Wg
0

3 )

against normalized lapse time ( t = g0V0t ), at distance of one mean free path

r = g0
−1  for a point shear-dislocation source by solid curves (Sato et al., 1997) in

Fig. 4b. The energy density faithfully reflects the source radiation pattern near the

direct arrival; however, the azimuthal dependence diminishes with increasing
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lapse time. Each solid curve asymptotically converges to a broken curve for

spherical source radiation. This simulation qualitatively agrees with the observed

radiation pattern independence of coda amplitudes at long lapse time.

It should be mentioned that the energy flux model (Frankel and

Wennerberg, 1987) and the use of Monte-Carlo methods (Hoshiba, 1991; Gusev

and Abubakirov, 1996) for envelope synthesis played important roles in the coda

study.

C. Coda attenuation and scattering coefficient

The coda energy density in a frequency band having central frequency f

is a sum of the density times average square of particle-velocity of S coda around

lapse time t, Ý u i
S Coda t; f( ) as ES Coda(t; f ) ≈ ρ0

Ý u i
S Coda t; f( )2

i=1

3

∑ , where ρ0  is the mass

density. For practical analysis, we need to introduce an empirical parameter,

known as coda attenuation QC
−1 . In the case of single scattering model, the coda

decay curve is given by

ES Coda t; f( )≈ Wg0

2πV0
2t 2 e− QC

−1 f( ) 2π f t for t >> 2r / V0 (7)

Fig. 5a summarizes reported coda attenuation. In general, QC
−1  is about 10−2  at 1

Hz and decreases to about 10−3
 at 20 Hz. The frequency dependence within a

region can be written as QC
−1 ∝ f −n  for f > 1 Hz, where n = 0.5 ~ 1. Regional

differences of QC
−1  were extensively studied in relation with seismotectonic

settings (Singh and Herrmann, 1983; Matsumoto and Hasegawa, 1989; Jin and

Aki, 1988). We may say that QC
−1

 is smaller in tectonically stable areas and

larger in active areas. Comparing the observed coda energy density with that

predicted from theoretical coda models, we can estimate total scattering

coefficient g0  for S-to-S scattering.  Fig. 5b shows reported g0 , which is of the

order of 10−2 km−1  for frequencies 1–30Hz, and each measurement has an error of

about factor 2. Nishigami (1991) and later Revenaough (1995) inverted for the
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spatial distribution of scattering coefficient from the analysis of S- and P-coda

amplitude residuals from the average coda decay. There have been various

attempts to map coda attenuation in various scales (O’Doherty et al., 1997;

Mitchell et al., 1997).

Seismic coda monitoring could provide information about the temporal

change in fractures and attenuation caused by changes in tectonic stress during the

earthquake cycle (Chouet, 1979). Jin and Aki (1986) reported a change in QC
−1

associated with the occurrence of the Tangshan earthquake. Fehler et al. (1988)

found differences in QC
−1

 before and after an eruption of Mt. St. Helens volcano.

There have been many studies that indicate a correlation between temporal

change in coda characteristics and the occurrence of large earthquakes. However,

there have been criticisms such as about the possible influences of using different

lapse times to establish the temporal change in coda characteristics and the effects

of differing focal mechanisms and earthquake locations (Sato, 1988; Frankel,

1991; Ellsworth, 1991). Got et al. (1990) proposed to use earthquake doublets.

Recent measurements try to reflect those criticisms (Aster et al., 1996).

Analyzing short-period seismograms recorded at Riverside, California between

1933 to 1987, Jin and Aki (1989) reported a temporal variability in QC
−1  and a

positive correlation with the seismic b-value. Gusev (1995) summarized coda

observations made between 1967 and 1992 in Kamchatka by plotting coda

magnitude residuals, and he reported two prominent anomalies.

D. Coda Normalization method

Coda waves provide a reliable way to isolate and quantify seismic

propagation effects. Based on the single scattering model, we may write the

average coda amplitude at a long lapse time tc  from the origin time at central

frequency f as a product of the source, propagation and site amplification as
Ý u S Coda tc; f( ) ∝ g0 ( f )Wi

S
( f ) Nj

S
( f ) e−QC

−1π f tc tc , where Nj
S ( f ) is the site



12 / Chapter 11

amplification factor, Wi
S( f ) is the S-wave source energy. We suppose that g0 ( f )

is constant. The direct S-wave amplitude is written as Ý u S Direct r; f( ) ∝

Wi
S

f( )Nj
S

f( )e− QS
−1πf r / β0 r , where r  is the hypocentral distance. Aki (1980)

proposed a correction for source size and site amplification by normalizing direct

S-wave amplitude by S-coda amplitude. Taking the logarithm of the ratio of the

product of r  and the direct S-wave amplitude to the averaged coda amplitude,

where the common site amplification and source terms cancel, we get
ln r Ý u S  Direct r; f( ) Ý u ij

S  Coda tc; f( )[ ]= − QS
−1 f( )πf /β0( )r + Const. (8)

We may smooth out the radiation pattern differences when the measurements are

made over a large enough number of earthquakes. Plotting the LHS of (8) against

r, the gradient gives the attenuation per travel distance. Aki (1980) first used this

method for the estimation of QS
−1  in Japan. Later, Yoshimoto et al. (1993)

extended this method to measure QP
−1 .

The ratio of coda amplitudes at different sites gives the relative site

amplification factor since the source factor is common. Tsujiura (1978) found

that estimates of site effects made using coda are similar to those obtained from

direct wave measurements. He also found less variability in site effect

measurements made for a single site using coda waves from various sources than

from direct waves for the same sources. The ratio of coda amplitudes of

difference earthquakes at a single station gives the relative source radiation since

the site factor is common. These methods have been widely used in the world

(Biswas and Aki, 1984; Phillips and Aki, 1986; Dewberry and Crosson, 1995;

Hartse et al., 1995).

E. Multiple lapse-time window analysis

For the determination of seismic albedo B0 , Fehler et al. (1992) and

Hoshiba et al. (1991) developed a method based on two observations: the early

portion of an S-wave seismogram is dominated by the direct S-wave whose
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amplitude change with distance is controlled by the total attenuation of the media;

and S-coda level is composed entirely of scattered S-waves whose amplitudes are

controlled by the total scattering coefficient. Their method is based on the

radiative transfer theory, in which scattering is assumed to be isotropic and

radiation is spherically symmetric. They evaluate the integrated energy density as

a function of source-receiver distance and medium parameters. Fehler et al.

(1992) analyzed seismograms of local earthquakes in Kanto–Tokai, Japan in three

frequency bands. Fig. 6 shows the energy density integrated over three time-

windows for 4–8 Hz band. The running means of the data over 15 km windows is

plotted vs. distance using gray lines, and the bold lines show the best fit to the

observed data from the theory. Later, Hoshiba (1993) proposed a single station

method to develop three curves, where he used average coda power at a fixed

lapse time for the source energy. Variations of the methods have been used to

make simultaneous measurement of attenuation and scattering coefficient in the

world. Seismic albedo B0  has been found to vary from 0.2 to 0.8 and QS
−1

decreases with increasing frequency over the range of 1–20 Hz.

F. Other studies of seismogram envelopes

The whole seismogram reflects not only the source information but also

the scattering characteristics of the earth medium. Sato (1984) proposed to

synthesize three-component seismogram envelopes by summing up single

scattered waves' energy, where frequency–dependent nonisotropic scattering-

amplitudes are calculated based on the Born approximation. S-coda amplitudes

are large on all three components, where SS-scattering contributes significantly

for a wide range of lapse times, and pseudo P- and S-phases appear even in the

null direction. Later, Yoshimoto et al. (1997a, b) developed an envelope synthesis

including the reflection at the free surface.
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The conventional waveform inversion for the source process was not

successful when applied to high-frequency seismograms. The appropriate

approaches would be to disregard the phase information and focus instead on

seismogram envelopes. Zeng et al. (1993) mapped the high-frequency radiation

from the fault plane using seismogram envelope analysis based on geometrical

ray theory. Gusev and Pavlov (1991) and Kakehi and Irikura (1996) proposed to

use seismogram envelopes of small aftershocks as an empirical Green function.

By using a solution of the radiative transfer equation, Nakahara et al. (1998)

proposed an inversion method to estimate the spatial distribution of high-

frequency energy radiation from the fault plane. Analyzing records of the 1994

off-Sanriku earthquake, Japan, they reported that the spatial distribution of high-

frequency radiation does not always coincide with the slip distribution determined

from longer period waves.

The duration of observed S-wave packet at distances longer than 100 km

is much longer than the source duration and the peak amplitude is delayed after

the first arrival (Sato, 1989). It was initially proposed that this envelope

broadening is a propagation effect due to diffraction and forward scattering

caused by slowly varying velocity structure, which was modeled by employing a

stochastic treatment of the parabolic wave-equation (Lee and Jokipii, 1975a, b).

Applying the theoretical prediction for the Gaussian ACF to envelope data

observed at Kanto, Japan, Sato (1989) and Scherbaum and Sato (1991) estimated

ε2 / a ≈ 10
− (2.98~3.27) km

−1
. Analyzing the characteristics of seismogram envelopes

from a larger region in Japan, Obara and Sato (1995) found that the random

inhomogeneity in the back-arc side of the volcanic front is rich in short

wavelength components compared with the Gaussian spectra. Gusev and

Abubakirov (1997) reported a decrease of scattering coefficient with increasing

depth revealed from the envelope broadening of both P- and S-waves in

Kamchatka.
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III. Spatial coherence of seismic array data

The common practice to deal with multi-scale, broadband heterogeneities

in seismology is to smooth both the observed wave field and the heterogeneity

model. In this way the information about small-scale heterogeneities is ignored

and the obtained image can only recover the slowly varying, large-scale

heterogeneities.

Stochastic methods, on the other hand, can obtain some statistical

characteristics of the small-scale heterogeneities from the statistics of the wave

field fluctuations. Statistical parameters of the medium include the RMS

perturbation of velocity distribution, characteristic scale length, power spectrum

or correlation function of velocity perturbations. Therefore, deterministic and

stochastic methods are complimentary to each other when exploring multi-scale

complex media. In the overlapping spectral band, the deterministic and stochastic

methods are observing the same object from different aspects and using different

simplifications during the analysis process.

The study of stochastic characteristics of random media using forward-

scattered waves started a few decades ago. In the earlier studies (e.g. Nikolaev,

1975; Aki, 1973; Capon, 1974; Berteussen, 1975; Berteussen et al., 1975, 1977;

MacLaughlin and Anderson, 1987), only variance and transverse coherence

functions (TCF) of phase and amplitude fluctuations were used. Limited by the

amount of information contained in these coherence functions, the medium model

description is restricted to a single-layer of uniform, isotropic random medium.

Through the use of the scattering theory of Chernov (1960), several statistical

parameters, such as the RMS velocity perturbation, the average scale length and

the total thickness of the layer, were inferred from the observed data. At the end

of the 1980s, Flatté and Wu (1988) introduced a new statistical observable, the

angular coherence function (AnCF), which increased significantly the statistical
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information in the reduced data sets, and allowed the authors to derive a simple

model of a layered, multi-scale random media. More recently, Wu (1989), Wu

and Flatté (1990), and Chen and Aki (1991) introduced the new joint coherence

function (JCF) or Joint transverse-angular coherence function (JTACF) and

derived the theoretical relation between the joint coherence functions of array

data and the heterogeneity spectrum (heterospectrum) of the random media. Wu

and Xie (1991) conducted numerical experiments to test the performance of

inverting JTACF to obtain the depth-dependent heterogeneity spectrum. The

recent development in theory and methods increases greatly the amount of

information in the utilized statistical data set and therefore improves significantly

the model resolution, especially the depth resolution of the heterogeneity

spectrum.

A. Observations of amplitude and phase fluctuations and their coherences

Due to wave diffraction, focusing and defocusing effects caused by

heterogeneities in a medium, wave front distortion and fluctuations of various

parameters of the wave field such as amplitude, arrival time and arrival angle may

occur. Arrival time and amplitude fluctuations of waves crossing a seismic array

such as NORSAR, LASA and other local or regional arrays have been widely

observed. The pattern of fluctuations may change drastically even between nearly

co-located events.

1. Definitions of various coherence functions: Coherence analysis is an effective

method of describing statistical properties of the wave field. TCF defines the

coherency (or similarity) of two transmitted wave fields as a function of

horizontal separations between receivers; AnCF, defines the coherency as a

function of angles between incident waves. For the more general case, the JTACF

gives the measure of coherency between two transmitted wave fields with
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different incident angles and observed at different stations (see Fig. 7). Compared

with TCF and AnCF, JTACF changes the coherence data from a 1D to a 3D

matrix (a function of station separation, dip, and azimuth angles) and therefore

increases tremendously the information content of the coherence data set,

providing more constraints for the determination of medium properties under the

array. However, the advantage of increasing the resolving power is offset by

decreasing the statistical stability to some degree. For real array data sets, the

compromise between resolution and stability depends on the amount of data and

angular coverage of the events. In practical array measurements the influence of

array aperture to the calculation of coherence functions has to be taken into

consideration (Flatté and Xie, 1992).

B. Theoretical basis of coherence analysis and inversion

The theory of transverse coherence of wave field after passing through a

uniform random media has been available in the literature for a long time

(Chernov, l960; Tatarskii, l971; Munk and Zacharasen, l976; Flatté et. al., l979).

However, the formulations for angular coherence and for joint coherence

functions has only been derived recently by Wu and Flatté (1990) using the Rytov

approximation and Markov approximation. Chen and Aki (l99l) independently

derived similar formulas using the Born approximation. The theory of the joint

coherence functions includes the TCF and AnCF as special cases. In the

derivations of Wu and Flatté (1990), spectral representation of random media is

used and the depth dependency of the spectrum is introduced. Therefore, the new

theory is more general and more suitable for the multi-scale, depth-dependent

earth heterogeneities.

In transmission fluctuation analysis, only the initial P arrival (direct P,

PKP or PKIKP) of a seismogram is used. By doing so, all the backscattered and

large-angle scattered waves are neglected. Therefore, the problem becomes a
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forward scattering or small-angle scattering problem, for which the scalar wave

approximation can be used (Wu and Aki, 1985; Wu, 1989). In such scattering

problems, only the wave speed perturbations affect the scattered field. Let the

wave speed be V x( ) = V0 1 + ξ x( )[ ] , where V0  is the deterministic background

velocity and ξ(x) is the random perturbation. Let U 0  be the wavefield in the

absence of fluctuations, and define the field perturbation Ψ  by

U = U0e
Ψ and Ψ = lnU − lnU0 = ln

A

A0

+ i(φ − φ0 ) = v + iϕ                   (9)

Substituting the above equation into the wave equation and taking the Rytov

approximation and parabolic approximation, we derive the formulas for the Joint

Coherence Functions (for the detailed derivation, see Wu and Flatté, 1990)

v1v2 xT ,
�

θ ( )= k2

4π2 dz dkTeikT ⋅(xT +z
�

θ )

−∞

∞

∫∫0

H

∫ sin 2 kT
2z

2k
P(kT ,0,z )

ϕ1ϕ 2 xT ,
�

θ ( )=
k2

4π2 dz dkTeikT ⋅(xT + z
�

θ )

−∞

∞

∫∫0

H

∫ cos2 kT
2z

2k
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�
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k2

4π2 dz dkTeik T ⋅(xT + z
�
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∞

∫∫0

H

∫ sin
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2 z

2k
cos

kT
2 z

2k
P(kT ,0,z)

   (10)

where xT = xT 1 − xT 2  is the receiver separation vector (transverse separation),
�

θ = (
�

θ 1 −
�

θ 2 )  is the incident-angle separation vector, H  is the propagation range

in the random medium, here equal to the thickness of the random layer, kT = kT

is transverse wavenumber and P(kT ,kz , z) is the 3D power spectrum of the

random heterogeneities ξ(x) at depth z . Eq. (10) gives the general formulas for

coherence analysis.  Putting xT = 0  and 
�

θ = 0 in the above formulas, we obtain

the variances and covariance of the fluctuations (magnitudes of fluctuations). For

the transverse coherence of the fluctuations, we put 
�

θ = 0  into Eq. (10). For the

angular coherence between fluctuations for two incident plane waves with angular

separation of 
�

θ , we put xT = 0 . In the past, the space domain formulation of

Chernov (1960) was used for fluctuation analysis.  Explicit expressions were

derived for the case of a Gaussian ACF by Chernov (see also, Sato and Fehler,
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l998). The corresponding formulas can be obtained by substituting a Gaussian

PSDF into Eq. (10).

C. Inversion for statistical characteristics of earth heterogeneities

1. Estimations of turbidity in the crust and upper mantle: In the l960’s, Russian

scientists conducted extensive investigations using the log-amplitude fluctuation

of P-wave first motion from explosions and earthquakes to infer the crustal and

upper mantle “turbidity coefficients” at different depths (see Nikolaev, l975). The

turbidity coefficient is defined as the variance of log-amplitude fluctuations

produced by a unit travel distance. The depth of heterogeneities contributing to

the measured turbidity was estimated by determining the seismic ray travel paths.

In these measurements, the turbidity coefficients were rather phenomenological

or apparent parameters which might have included spatial variations of site

factors and the variations of intrinsic attenuation.  Nikolaev (l975) concludes that

the turbidity for 5 Hz P-waves in the crust and upper mantle is 0.0001–0.0025

km−1 , with an error factor of about two.

2. Uniform random medium model for the lithosphere: For the single layer

Gaussian medium model, the model parameters are the RMS velocity

perturbation ε, correlation length a and the layer thickness H. Correlation length a

can be estimated from a measurement of the transverse correlation of log

amplitude and phase.  The layer thickness H and the wave speed perturbation ε

can be obtained from the measured variance and covariance of v and ϕ.  This

single layer isotropic Gaussian medium model has been used to analyze the data

at LASA (Aki, l973; Capon, l974; Berteussen et al., 1975) NORSAR (Capon and

Berteussen, l974; Berteussen et al., l977), and the Gauribindanur seismic array

(GBA) in Southern India (Berteussen et al., l977). It is found that the estimate of

correlation length a is much better constrained than the layer thickness H and
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perturbation ε.  For LASA, a ≈10-12 km, but H ranged from 60 km to 120 km

with ε varying from 4% to 1.9% from different investigations.

3. Non-Gaussian nature of the heterogeneities: The Gaussian correlation function

characterizes single-scale smoothly heterogeneous media, while real

heterogeneities in the earth are often multi-scaled. Flatté and Wu (l988) showed

that the exponential or Kolmogorov correlation functions fit the data much better

than the Gaussian correlation function. The non-Gaussian nature of the

lithospheric heterogeneities has been established also from velocity well-logging

data (Sato, l979; Wu, l982).

4. Depth dependent random medium model for the crust and upper mantle: As

many investigators pointed out (Berteussen et al., l975; Flatté and Wu, l988; Wu

and Flatté, l990), the use of only TCF resulted in poor determination of the

random medium thickness and the ambiguity in resolving the medium

perturbation strength (variances) and the thickness. After introducing the AnCF,

Flatté and Wu (l988) were able to invert both the TCF and AnCF for a more

complex random medium model. They showed that a single-layer uniform

random medium failed to explain the observed fluctuation coherences represented

by both TCF and AnCF and proposed a two-layer (overlapping) random medium

model for the crust and upper mantle beneath the NORSAR (see Fig. 8). Each

layer has a different perturbation strength and a different power-law heterogeneity

spectrum. The best model has the top layer extending to a depth of 200 km with a

flat spectrum, representing the small-scale heterogeneities in the lithosphere, and

the second layer located between 15 and 250 km with a k −4  power-law spectrum,

where k is wavenumber. The latter spectrum characterizes the large-scale

heterogeneities in the mantle.  From the RMS travel-time fluctuation (0.135 s)

and the RMS log-amplitude fluctuation (0.41 neper= 3.6 dB), the RMS P -wave
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speed perturbation for the first layer is 0.9–2.2% and for the second layer, 0.5–

1.3%.

Based on the theory of general coherence analysis in random media, it is

clear that TCF has no depth resolution and AnCF has only limited depth

resolution that degenerates quickly with increasing depths.  On the other hand, the

joint coherency functions (JCF) increase tremendously the information content

and provide high depth resolution.  JTACF have been calculated for the

NORSAR data (Wu et al., l994) and the Southern California Seismic Network

data (Liu et al., l994; Wu et al., l995), and some interesting findings were

reported.

IV. Numerical modeling of wave propagation in heterogeneous media

We have presented some analytical methods for investigating wave

propagation in heterogeneous media where only the random component of

heterogeneity is modeled. Generally, modeling random heterogeneities with

deterministic structures using the methods discussed is difficult. In addition, for

studies of wave propagation in random media, we usually model the mean

response of a suite of random media whose statistical characterizations are the

same. Results from such modeling are often difficult to relate to real earth

observations. We now briefly discuss numerical modeling of wave propagation in

heterogeneous media.

Numerous modeling studies have been undertaken to investigate wave

propagation in heterogeneous media using numerical modeling. Numerical

methods can model a wide range of earth structures. Studies using finite

difference (Frankel and Clayton, 1986; Shapiro and Kneib, 1993), boundary

integral approach (Benites et al., 1992; Benites et al., 1997), homogeneous layer

solutions (Richards and Menke, 1983), and Fourier domain methods (Spivack and

Uscinski, 1989; Hoshiba 1999; Wu et al., 2000) have been made. In each case,



22 / Chapter 11

the choice of numerical method was based on the type of wave phenomena being

investigated. Boundary integral and finite difference solutions provide reliable

solutions including all wave field phenomena in strongly heterogeneous media;

however, both methods are computationally expensive and it is difficult to

investigate a range of models. For example, finite difference solutions require that

grid spacing be chosen to minimize grid dispersion. As the propagation times and

frequency being modeled increase, the spatial grid size and time increment must

decrease to minimize grid dispersion (Holberg, 1987). As an example, Wu et al.

(2000) required a grid spacing of 0.02 times the dominant wavelength to reliably

model propagation to distances of 35 wavelengths. Boundary integral approaches

have restrictions on the number of fictitious sources required along each boundary

to adequately match boundary conditions. As velocity heterogeneity or frequency

increase, the number of fictitious sources increases and the resulting

computational cost increases.

Since several complete descriptions of finite difference and boundary

integral techniques are available (Holberg, 1987; Benites et al., 1992), we will

discuss a class of numerical modeling techniques that has received little attention

among seismologists. The methods are powerful in that they can model wave

propagation faster than can be done using finite difference or boundary integral

approaches. The methods have been extensively used in seismic exploration since

the introduction of an intuitive approach for seismic wave modeling known as

phase shift plus interpolation (PSPI) by Gazdag and Sguazzero (1984) and the

work of Stoffa et al. (1990), who extended a wave-equation based method that

was well known in acoustics (see e. g. Jensen et al., 1994). The method of Stoffa

et al. (1990) is called the Split-step Fourier (SSF) approach; its reliability has

been quantitatively investigated by Huang and Fehler (1998). Extensions of the

SSF method have been presented by Wu (1994), Huang et al. (1999a, 1999b),

Huang and Fehler (1999) and Wu et al. (2000). The methods are reliable for
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modeling wave propagation in the forward direction but the effects of

reverberations between scatterers are not included. The methods operate in the

frequency domain and calculations are performed in the wavenumber and space

domains. We will briefly introduce the SSF approach.

A. SSF approach

The constant-density scalar-wave equation in the frequency domain is
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 +
ω2

V (xT ,z)2

  

 
 

  

 
 U(xT ,z;ω) = 0 (11)

where xT ≡ (x, y), U(x T , z;ω)  is the wave field in the frequency domain, V(xT ,z)

is the velocity of the medium, and ω is the angular frequency. In some sense we

can break the scalar wave equation into two parts, one representing downgoing

waves and one representing upgoing waves. The equation for downgoing waves is
∂
∂z

U(xT ,z;ω) = i Λ(xT ,z;ω)U(xT ,z;ω) (12)

where the positive z direction is the propagation direction and the square-root

operator Λ  is defined by

Λ(xT , z;ω) =
ω2

V(xT , z)2 +
∂2

∂x 2 +
∂2

∂y2 (13)

The formal split-step marching solution of the one-way wave equation is given by

U(xT , zi + ∆z;ω) = e
i Λ (xT , z;ω)dz

zi

zi+∆z

∫
U(xT , zi;ω) (14)

where we assume we know the wave field at zi  and we wish to compute the wave

field at zi + ∆z . Huang and Fehler (1998) discuss how to use a small-angle

approximation to evaluate the exponential of the integral in Eq. (14) to obtain

U(x T , zi +1;ω) = e
iω ∆s(x T , z)dz

zi

zi+1∫ 
  

 
  U0 (xT , zi +1;ω)   (15)

where the slowness heterogeneity ∆s ≡1/ V x⊥ , z( )−1/ V0 z( )  is assumed to be

small, and U0 (xT , zi+1;ω)  is the wave field at zi +1  obtained by propagation of the
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wave field across the interval ∆z  where the interval is assumed to have

homogeneous velocity V0  and

U0 (xT , zi +1;ω) = Fk T

−1
e

ikz zi( )∆z
FxT

U(xT ,zi ,ω{ }{ } (16)

where kz zi( )= k0 zi( )2
− kT

2   and k0 = ω/V0 zi( ).  Fx T
 and Fk T

−1 are 2D Fourier and

inverse Fourier transforms over xT  and  kT , respectively. Wave propagation is

done in two steps: a free space propagation in the wavenumber domain across

each depth interval using the background slowness s0  for the interval followed by

a correction for the heterogeneity described by ∆s  within the propagation

interval, which is done in the space domain. The wave field is transferred

between the space and wavenumber domains using a Fast Fourier Transform.

Since the propagator depends only on the local medium properties, access to the

entire velocity structure of a model is not required to propagate through a portion

of the model. This gives the method a computational advantage over some other

wave-equation-based methods. The method is valid for extrapolating the wave

field so long as the primary direction of propagation is nearly parallel to the

positive z  direction and the variation in velocity is small in the direction

perpendicular to z . Later extensions mentioned above have systematically

improved the accuracy for large-angle waves in strongly varying media.

The SSF method has been used by Hoshiba (1999) in an investigation of

the influences of random structure on amplitudes of seismic waves. Wu et al.

(2000) developed a method similar to the SSF method for modeling Lg

propagation in heterogeneous media. Spivack and Uscinski (1989) present an

analytic and numerical investigation of the accuracy of the SSF method and

conclude that it is reliable for calculating wave fields in random media but that it

is even more reliable when computing transverse correlations of the wave field.

There is a stochastic treatment of the phase screen method, which is called the

Markov approximation (Sreenivasiah et al., 1976; Lee and Jokipii, 1975a, b).

This method directly gives the wave envelope in random media, and is applied to
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the study of seismogram-envelope characteristics (Sato, 1989, Scherbaum and

Sato, 1991; Obara and Sato, 1995). Fehler et al. (2000) have compared

waveforms calculated for random media using finite difference, an extension of

the SSF method, and the Markov approximation.

V. Summary and Discussion

Beginning from visual observations of the character of recorded

seismograms that led to new ways of thinking about seismic wave propagation,

the study of seismic wave scattering and attenuation has led to new and improved

observational tools for characterizing the earth. One reason that the coda

normalization method has been so useful is because station calibration and/or site

amplification could be eliminated so that other medium parameters could be

measured. Recent theories about seismic wave propagation in heterogeneous

media can also be applied to investigate envelope shape and additional

information about lithospheric structure can be obtained from broadband

calibrated data.

Table 1 summarizes fundamental observations that have led to advances in

our understanding of stochastic wave phenomena in the earth’s lithosphere. The

model or interpretation method used to understand each fundamental observation

is listed along with the parameters that can be estimated by application of the

models to real data. Many of the parameters can be estimated using deterministic

models. In most cases, observations made using deterministic and random-wave

approaches are complementary. In many cases, the stochastic approach provides

parameters characterizing the earth’s lithosphere that cannot be obtained from

deterministic measurements.

Our understanding about the structure of heterogeneity of the earth’s

lithosphere as a function of scale is limited. While some data can be explained

using well-defined correlation functions that have a narrow-band of
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heterogeneity, this does not mean that heterogeneity is limited to a narrow band.

One fundamental issue facing those who investigate scattered waves is to find a

unifying theory for a broad spectrum of seismic data that allows us to estimate the

scale of heterogeneity over a broad range of scales.

Use of stochastic seismology has led to significant advances in our

understanding of the character of seismic waveforms and enabled us to model

portions of the waveforms that cannot be explained deterministically. The success

of the models has improved our understanding of wave propagation in the earth

and led to the prediction of parameters that improve our understanding the

structure and composition of the Earth's lithosphere.
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Table 1. Fundamental observations that have led to advances in using stochastic

seismology to model scattered waves, theory and methods used to explain the

observations, and the parameters that may be inferred from the methods.

Observation Theory and Interpretation Method Parameters Estimated
Existence of
Coda

� Phenomenological
� Coda Normalization Method
� Single scattering Approximation
� Energy-Flux Model

� Coda Attenuation
� Scattering Coefficient
� Relative Site Amplification
� Relative Source Factors

Envelope Shape
of Local
Earthquakes

� Radiative Transfer Theory
� Multiple Lapse-Time Window

Analysis

� Scattering Coefficient
� Seismic Albedo (Scattering

Loss, Intrinsic Absorption)
� High Frequency Radiation

from Fault
Attenuation � Spectral Decay with Distance

� Coda Normalization Method
� Born Approximation

� Fractional Velocity
Fluctuation

� Scale Length (Correlation
length) of Heterogeneity

Array Phase/
Amplitude
Characteristics

� Diffraction/Forward Scattering
� Parabolic Wave Equation and

Rytov-Approximation
� Theory of Coherence Analysis

� Spectra of Heterogeneity
� Spatial Variation of

Stochastic Characterization
of Medium

Envelope
Broadening of
Regional
Seismograms

� Diffraction/Forward Scattering
� Parabolic Wave Equation
� Markov Approximation
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FIGURE 1 a. Reported values of QS

−1  for the lithosphere: surface wave
analysis, 1-7; multiple lapse-time window analysis, 8-12;  spectral decay
analysis, 11-26. b. Reported values of QP

−1  for the lithosphere: surface-
wave analysis, 1;  spectral decay analysis, 2-8; extended coda-
normalization method, 9-10. Detailed references are given by Sato and
Fehler (1998). [Reprinted from Sato and Fehler (1998) with permission
from Springer-Verlag].

FIGURE 2. Scattering attenuation vs. ak  for scalar waves: dotted curve,
the ordinary Born approximation; solid curves, the corrected Born
approximation, where k = ω /V

0
.  ψ C = 90�  by Wu [1982a] and ψ C ≈ 29�

 by
Sato [1982].

FIGURE 3. Horizontal-component velocity seismograms  of a crustal
earthquake of ML =4.6 in Japan. Seismograms are arranged from bottom
to top by increasing distance from the earthquake epicenter. The direct S-
wave is followed by S-coda waves [Courtesy of K. Obara].

FIGURE 4 a. Geometry of the multiple scattering process for a point-shear
dislocation source, where the lobes show the radiation pattern of the S-
wave energy. b. Temporal change in the normalized energy density at
r = 1 g0  at different directions from a point shear-dislocation source, where
t = g0V0t . The broken curve corresponds to results for spherical source
radiation [Reprinted from Sato et al. (1997) with permission from Elsevier
Science].

FIGURE 5. a. Coda attenuation QC

−1
 against frequency for various regions.

b. Total scattering coefficient g0  for SS scattering vs. frequency from
regional measurements made throughout the world: results obtained
using the single scattering model are labeled 1-5  (plots include
backscattering coefficient gπ); results based on the multiple lapse-time
window analysis (Isotropic scattering is assumed) are labeled 6-8.
Detailed references are given by Sato and Fehler (1998) [Reprinted from
Sato and Fehler (1998) with permission from Springer-Verlag].

FIGURE 6. Normalized integrated energy density with geometrical
spreading correction vs. hypocentral distance in the Kanto–Tokai region,
Japan, relative to the value at a hard rock borehole site for vertical
component data. Average of data and best fit theoretical curves are
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shown by gray lines and bold curves, respectively for 4–8 Hz band
[Reprinted from Fehler et al. (1992) with permission from Blackwell
Science].

FIGURE 7. Comparison of the data reduction geometry for TCF
(transverse coherence function), AnCF (angular coherence function), and
JTACF (joint transverse-angular coherence function).

FIGURE 8. Comparison between the data and the prediction of the two-
layered power-law random medium model at NORSAR: a. TCF; b. AnCF
[Reprinted from Flatté and Wu (1988) with permission from American
Geophysical Union].
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